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Abstract
The close similarity between the hierarchies of multiple-point correlation
functions for the diffusion-limited coalescence and annihilation processes has
caused some recent confusion, raising doubts as to whether such hierarchies
uniquely determine an infinite particle system. We elucidate the precise
relations between the two processes, arriving at the conclusion that the hierarchy
of correlation functions does provide a complete representation of a particle
system on the line. We also introduce a new hierarchy of probability density
functions for finding particles at specified locations and none in between. This
hierarchy is computable for coalescence, through the method of empty intervals,
and is naturally suited for questions concerning the ordering of particles on the
line.

PACS numbers: 02.50.–r, 05.40.–a, 05.70.Ln, 82.20.–w

Diffusion-limited coalescence, A + A → A, and annihilation, A + A → 0, on the line, have
long been known to display anomalous kinetics (different from the mean-field reaction-limited
regime) and to belong to the same universality class [1]. In fact, the similarities run deeper
than that, as the full hierarchy of multiple-point correlation functions in the two processes,
when expressed in different length scales, are identical [2–6]. Yet there exist important
differences between the two processes. Most conspicuously, the density function for the gap x
between adjacent particles (the so-called inter-particle distribution function or IPDF) falls off,
for x → ∞, as e−αx2

for coalescence, but only as e−βx for annihilation [7–10]. This raises
the question whether the infinite hierarchy of multiple-point correlation functions uniquely
determines a system of particles on the line [6].

In this communication, we answer this question on the affirmative: the hierarchy of
multiple-point correlation functions does provide a unique representation of an infinite particle
system. Indeed, the IPDF can be computed from the multiple-point correlation functions using
an inclusion–exclusion formula as shown in equation (3). The correlation functions of the
two processes are simply not the same, despite the similarity upon the rescaling of space. The
precise relationship between coalescence and annihilation, and its consequences, is thoroughly

0305-4470/05/153247+06$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3247

http://dx.doi.org/10.1088/0305-4470/38/15/001
http://stacks.iop.org/ja/38/3247


3248 D ben-Avraham and É Brunet

discussed. An alternative hierarchy of probability density functions, for finding particles at
locations x1, . . . , xn and none in between, is introduced. This new hierarchy is naturally
suited for answering questions concerning the ordering of particles on the line. It can be used
for obtaining explicit expressions for the probability of finding excatly k particles between
two given particles and, in particular, the IPDF. These quantities can be computed exactly
for coalescence, using the method of empty intervals [8, 11–16], and we show how to obtain
usefull and efficient approximations for the case of annihilation.

Equivalence between coalescence and annihilation

The n-point correlation functions (the joint probability for finding particles at positions
x1, . . . , xn at time t, simultaneously) of diffusion-limited annihilation and diffusion-limited
coalescence in one dimension seem very similar. Indeed, for suitable initial conditions, one
has the exact result [2–6]:

ρanni
n (x1, . . . , xn; t) = 1

2n
ρcoal

n (x1, . . . , xn; t). (1)

Relation (1) has the following simple interpretation: to obtain a configuration of the
annihilation process, with the correct weight, select a configuration of the coalescence process
but then retain only half of the particles, i.e., randomly, and independently, retain (or discard)
each of the original particles with probability 1/2.

This interpretation follows from the well-known observation that the two processes may
be realized simultaneously. Starting from a random initial configuration of particles on the
line, tag each of the particles with probability 1/2 and run a diffusion-limited coalescence
process: When two particles meet they coalesce into a single untagged particle if the parents
are alike (either normal or tagged) and into a tagged particle if the parents are different. Clearly,
the set of all particles in the system (tagged and untagged) represents a configuration of the
coalescence process A + A → A, while the subset of tagged particles follows the annihilation
process A + A → 0 . At any time t a particle is untagged if and only if it has an even number
of tagged ancestors at time t = 0, while the ancestors of two different particles form disjoint
sets. It follows that at time t particles are tagged with probability 1/2 independently from one
another.

For the suitable initial conditions for which (1) holds, the density of particles in the
anihilation process is half the density in the coalescence process. It is tempting to rescale
space in the coalescence process by a factor of 2, to impose the same density in both
processes. Defining yi = 2xi and effecting the change of variables ρcoal

n (x1, . . . , xn; t) →
ρ̃coal

n (y1, . . . , yn; t), one gets

ρanni
n (x1, . . . , xn; t) = ρ̃coal

n (y1, . . . , yn; t). (2)

This relation has caused some confusion, leading one of us (DbA) to erroneously conclude that
since the distribution of particles in coalescence and annihilation are different (as evidenced,
for example, from their different inter-particle gap distribution functions) it must be the case
that the infinite hierarchy of multiple-point correlation functions does not uniquely determine
an infinite set of points on the line [6]. Equation (2) does not mean, however, that the functions
ρanni

n and ρ̃coal
n are identical: they are applied to different arguments. Indeed, the stretching

of space by a factor of 2 and eliminating half of the particles at random are not generically
equivalent3. An easy way to see this is by considering the effect of the two operations on a
lattice of equally spaced particles: stretching yields a new lattice with double the gap between
particles, whereas the random elimination of half the particles leads to a disordered array.

3 A notable exception is when the particles are distributed randomly in a Poisson distribution.
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Inter-particle distribution functions (IPDF)

The hierarchy of multiple-point correlation functions determines the system uniquely. Some
quantities, however, such as the IPDF, are notoriously difficult to obtain, using ρn. This quantity
is readily available for the coalescence process, through the method of empty intervals, but
not for the annihilation process.

To obtain the IPDF, one needs to compute the probability density P0(x1, x2) for finding
particles at x1 and x2 and no particles in between. The density probability function of the gap
x between particles is then P0(0, x)/ρ.4 P0(x1, x2) is, in principle, available from ρn. Indeed,

P0(x1, x2) = ρ2(x1, x2) −
∫ x2

x1

dz1 ρ3(x1, z1, x2) +
∫ x2

x1

dz1

∫ x2

z1

dz2 ρ4(x1, z1, z2, x2) − · · · .
(3)

On the right-hand side of this equation, events with exactly one particle between x1 and x2 are
counted once by the first term but cancelled by the second term; events with two particles in
between are counted once each by the first and third terms, but are cancelled by the second
term, which counts these events twice (z1 representing the first or second intervening particle),
etc. In this fashion, only the events with no particles between x1 and x2 are accounted for at
the end.

More generally, one can write down a similar expression for Pk(x1, x2)—the probability
density for finding particles at x1 and x2 and exactly k particles in between

Pk(x1, x2) =
∑
n�k

(−1)n−k

(
n

k

)
Rn(x1, x2), (4)

where

Rn(x1, x2) =
∫

· · ·
∫

x1< z1<···<zn<x2

ρ2+n(x1, z1, . . . , zn, x2) dz1 · · · dzn. (5)

In principle, all the ρn can be computed explicitly, both in the annihilation and the
coalescence process, but their actual expressions are complicated and (3) becomes impractical.
Another possibility is to derive P anni

0 from P coal
k using the correspondence between the

configurations of both processes: To obtain a configuration of the anihilation process with
particles at positions x1 and x2 and nothing in between, we start with a configuration of the
coalescence process with particles at x1 and x2 and exactly k′ other particles in between.
Retaining each of these particles with probability 1/2, there is a probability 1/4 that the
particles at x1 and x2 stay put, and a probability (1/2)k

′
to kill the k′ particles in between.

Therefore, we have

P anni
0 (x1, x2) = 1

4

∑
k′�0

1

2k′ P
coal
k′ (x1, x2). (6)

This is but a special case of equation (23) in [10], as already suggested by Derrida and Zeitak.
Similarly, one has

P anni
k (x1, x2) = 1

4

∑
k′�k

1

2k′

(
k′

k

)
P coal

k′ (x1, x2). (7)

Obtaining P coal
k (x1, x2) from ρcoal

n , still remains an impractical proposition. Fortunately,
in the case of the coalescence process, the method of intervals allows for a more direct way.

4 Here, and elsewhere in the text, the missing time argument t is implied.
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New hierarchy for finding n sequential particles

Dimension 1 is special in that one can meaningfully discuss the ordering of the particles on
the line. Thus, instead of the traditional hierarchy of multiple-point correlation functions, we
propose an hierarchy designed to keep track of the sequential order of the particles.

Let ωn(x1, . . . , xn; t) denote the probability for finding particles at x1, x2, . . . , xn at time t,
but no other particles in the intervals (x1, x2), (x2, x3), . . . , (xn−1, xn). Clearly, ωn determine
a distribution uniquely. Indeed,

ρ2(x1, x2) =
∞∑

n=0

∫
· · ·

∫
x1<z1<···<zn<x2

ω2+n(x1, z1, . . . , zn, x2) dz1 · · · dzn, (8)

ρ3(x1, x2, x3) =
∑
k,l

∫
· · ·

∫
x1<y1<···<yk<x2<z1<···<zl<x3

ω3+k+l (x1, y1, . . . , yk, x2, z1, . . . , zl, x3)

dy1 · · · dyk dz1 · · · dzl, (9)

and similar expressions for ρm,m > 3. Thus, defining ω1(x) ≡ ρ1(x), the complete hierarchy
of multiple-point correlation functions, {ρn} can be derived from the hierarchy of sequential
particles, {ωn}.

ωn are better suited to deal with questions regarding ordered sets of particles. A relevant
example are Pk , which instead of the infinite sum in (4) are now simply given by

Pk(x1, x2) =
∫

· · ·
∫

x1<z1<···<zk<x2

ω2+k(x1, z1, . . . , zk, x2) dz1 · · · dzk, (10)

and, in particular, P0(x1, x2) = ω2(x1, x2).
In the case of coalescence, the hierarchies {ρn} and {ωn} may be derived explicitly through

the method of empty intervals. Specifically, the method of intervals yields expressions
for En(x1, y1, . . . , xn, yn; t)—the probability that the intervals (x1, y1), . . . , (xn, yn) be
simultaneously empty at time t [14]. The two hierarchies are obtained as spatial derivatives of
the En, but evaluated at different points:

ωn(x1, . . . , xn; t) = ∂n

∂x1 · · · ∂xn

En(x1, y1, . . . , xn, yn; t)|y1=x2,...,yn−1=xn,yn=xn
, (11)

ρn(x1, . . . , xn; t) = ∂n

∂x1 · · · ∂xn

En(x1, y1, . . . , xn, yn; t)|y1=x1,...,yn=xn
. (12)

Actually, ωn can be computed somewhat more cheaply, from En−1 rather than En:

ωn(x1, . . . , xn; t) = − ∂n

∂x1 · · · ∂xn−1∂yn−1
En−1(x1, y1, . . . , xn−1, yn−1; t)|y1=x2,...,yn−1=xn

.

(13)

We have written equation (11) merely to showcase the beautiful symmetry between ρn and
ωn.

The first few ωcoal
n computed for coalescence, in the long-time asymptotic limit, using the

empty intervals derived in [14, 6], are [10]

ωcoal
2 (x1, x2; t) = √

πρ2ξ12 e−ξ 2
12 , (14)

ωcoal
3 (x1, x2, x3; t) = √

πρ3ξ13
(
e−ξ 2

12−ξ 2
23 − e−ξ 2

13
)
, (15)

ωcoal
4 (x1, x2, x3, x4; t) = √

πρ4
{
ξ14

(
e−ξ 2

14 − e−ξ 2
14−2ξ 2

23 + e−ξ 2
12−ξ 2

23−ξ 2
34 − e−ξ 2

12−ξ 2
24

+ e−ξ 2
13−ξ 2

23−ξ 2
24 − e−ξ 2

13−ξ 2
34
)

+
√

π
(
ξ14ξ23 e−ξ 2

14−ξ 2
23

− ξ13ξ24 e−ξ 2
13−ξ 2

24 + ξ12ξ34 e−ξ 2
12−ξ 2

34
)

erfc(ξ23)
}
, (16)
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where ρ = 1/
√

2πDt is the long-time asymptotic density of particles in the coalescence
process, ξij ≡ (xj −xi)/

√
8Dt , and erfc(x) = (2/

√
π)

∫ ∞
x

exp(−u2) du is the complementary
error function.

Returning to the question of the IPDF in the annihilation process, all the ωcoal
k can be

computed, in principle, but obtaining the exact P anni
0 from (10) and (6) is not an easy task.

Nevertheless, this approach can be used to generate efficient approximations of the IPDF. For
instance, for small inter-particle gaps x = x2 − x1, one needs only keep the first few terms
in (6), since the probability of finding several particles in the gap becomes negligibly smaller
as their numbers increase. Indeed, using just the first term in (6) yields an expression that
matches the exact result (equation (43) in [10]) to order x3; the first two terms improve the
match up to order x7 and three terms up to x12. However, truncating (6) in this fashion, at any
order, gives terrible results for large x, as it predicts a Gaussian decay, exp(−πx2), instead of
the correct exponential decay.

For large values of x, the simplest assumption that the gaps between particles are
independent,

ωcoal
2+k (x1, z1, z2, . . . , zk, x2) ≈ ωcoal

2 (x1, z1)ω
coal
2 (z1, z2) · · · ωcoal

2 (zk, x2)

ρk
, (17)

leads to an exponential decay of the IPDF, P anni
0 (0, x) � 1.6777 exp(−1.2685x), at large x

(where distance is scaled so that the density of particles is equal to 1). The same result was
already derived in [9], using a similar assumption of uncorrelated particles, and compares
favourably with the exact result of P anni

0 (0, x) ∼ 1.8167 exp(−1.3062x) [10]. Systematic
improvements are achieved by taking into account more correlations. For instance, assuming

ωcoal
2+l (x1, z1, z2, . . . , zl, x2) ≈ ωcoal

3 (x1, z1, z2)ω
coal
3 (z2, z3, z4) · · · ωcoal

3 (zl−1, zl, x2)

ρl
(18)

(for l odd; for l even, the last term in the product is ωcoal
2 (zl, x2)), which leads to

P anni
0 (0, x) � 1.7290 exp(−1.2853x).

Using equation (7), the method we have just presented can be employed to compute
approximations of more complicated quantities for the annihilation process, such as
P anni

k (0, x).

Discussion

In summary, we have elucidated the exact relation between diffusion-limited one-species
coalescence and annihilation in one dimension. The precise meaning of the similarity
between the respective hierarchies of multiple-point correlation functions, equation (1), has
been clarified: configurations of the annihilation process are obtained by random elimination
of half the particles in the coalescence process. This, however, is not equivalent to the
stretching of space by a factor of 2.

We have also introduced a different hierarchy of probability density functions:
ωn(x1, . . . , xn; t)—the probability for finding particles at x1, . . . , xn and no particles in
between, at time t. This new hierarchy capitalizes on the topological constraints special
to one dimension, and is better suited for answering questions concerning specific numbers of
particles.

Both the traditional multiple-point correlation functions, ρn, and ωn can be derived from
the distribution of empty intervals on the line, in a way that highlights their relationship,
equations (11), (12). The two hierarchies determine an infinite system of particles on the line
completely, and in particular it is possible to express ρn using ωn, and vice versa, albeit at the
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cost of resorting to infinite sums of unwieldy integrals. In this sense, the best situation occurs
when the distribution of empty intervals is available, for it yields ρn and ωn directly. This is
the case for the coalescence process, but not for annihilation. For annihilation ρn are known,
but ωn are harder to obtain. Derrida and Zeitak have obtained the IPDF (directly related to
ω2) exactly [10]. Here we presented an alternative approach, based on the relation between
ωn and ρn, that provides useful insights.

The situation is not yet completely clear even for coalescence. For example, consider the
probability of finding two particles separated by a distance x and having exactly k particles
in between, P coal

k (0, x). For small gaps, x 	 1/ρ, we obtain P coal
k (0, x) ∼ xα(k), with

α(k) = 1, 4, 8, 13, for k = 0, 1, 2, 3, respectively. We have not yet found a satisfactory way
to predict α(k) for arbitrary k. It remains the subject of future studies.
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